Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 472: 134524, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38714058

RESUMO

Developing semiconductor substrates with superior stability and sensitivity is challenging in surface-enhanced Raman scattering (SERS) research. Here, a snowflake Cu2S@ZIF-67 heterostructure was fabricated using a straightforward method, exhibiting a notable enhancement factor of 9.0 × 109 and a limit of detection (LOD) of 10-14 M for methylene blue (MB). In addition, the Cu2S@ZIF-67 heterostructure substrate demonstrates outstanding homogeneity (relative standard deviation (RSD) = 9.2%) and stability (120 days). Employing Cu2S generates highly sensitive hotspots via an electromagnetic (EM) mechanism, and the growth of ZIF-67 on its surface augments the adsorption capacity and charge transfer capability (chemical mechanism, CM), thereby enhancing the SERS detection sensitivity. Furthermore, the Cu2S@ZIF-67 heterostructure, which was used as a SERS substrate, facilitated the detection of bisphenol A (BPA) with an LOD of 10-11 M. The Cu2S@ZIF-67 heterostructure substrate has excellent selectivity and anti-interference, which is very suitable for BPA detection in complex environment applications. The accuracy of the Cu2S@ZIF-67 heterostructure as a SERS substrate for detecting BPA in real water samples (water bottles, tap water, and pure milk) was confirmed by comparison with high-performance liquid chromatography (HPLC). These results demonstrate that through the rational design of heterostructures can achieve the quantitative and accurate detection of hazardous substances in food and the environment can be achieved.

2.
J Colloid Interface Sci ; 660: 42-51, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38241870

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is an analytical technique with a broad range of potential applications in fields such as biomedicine, electrochemistry, and hazardous chemicals. However, it is challenging to develop SERS substrates that are both good sensitive and signal stable. Here we designed a superhydrophobic Nd doped MoS2 uniformly assembled on the activated carbon fiber cloth (CFC) to avoid the coffee ring effect and enrich the analyte, improving the enhancement factor (EF) to 3.9 × 109 and pesticide endosulfan (<10-10) analyte detection. We demonstrate our strategy by density-functional theory (DFT) calculations confirming that both adsorption energy and density of states are enhanced after doping Nd leading to SERS enhancement. Beside DFT calculations, our experiments also provide an effective means to demonstrate that the high SERS sensitivity is based on multiple charge transfer processes combined with the activated carbon cloth. Our results address the limitations of low sensitivity and limit of detection (LOD) of semiconductor SERS substrates for trace analysis and are a step towards practical applications.

3.
Small ; 20(1): e2304958, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649163

RESUMO

Room temperature phosphorescence (RTP) has emerged as an interesting but rare phenomenon with multiple potential applications in anti-counterfeiting, optoelectronic devices, and biosensing. Nevertheless, the pursuit of ultralong lifetimes of RTP under visible light excitation presents a significant challenge. Here, new phosphorescent materials that can be excited by visible light with record-long lifetimes are demonstrated, realized through embedding nitrogen doped carbon dots (N-CDs) into a poly(vinyl alcohol) (PVA) film. The RTP lifetime of the N-CDs@PVA film is remarkably extended to 2.1 s excited by 420 nm, representing the highest recorded value for visible light-excited phosphorescent materials. Theoretical and experimental studies reveal that the robust hydrogen bonding interactions can effectively reduce the non-radiative decay rate and radiative transition rate of triplet excitons, thus dramatically prolong the phosphorescence lifetime. Notably, the RTP emission of N-CDs@PVA film can also be activated by easily accessible low-power white-light-emitting diode. More significantly, the practical applications of the N-CDs@PVA film in state-of-the-art anti-counterfeiting security and optical information storage domains are further demonstrated. This research offers exciting opportunities for utilizing visible light-activated ultralong-lived RTP systems in a wide range of promising applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...